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Abstract: For a connected graph G = (V,E), a set S C E is called an
edge-to-vertex geodetic set of G if every vertex of GG is either incident with an
edge of S or lies on a geodesic joining a pair of edges of S. The minimum
cardinality of an edge-to-vertex geodetic set of G is ge, (G). Any edge-to-vertex
geodetic set of cardinality ge,(G) is called an edge-to-vertex geodetic basis of
G. A subset T C S is called a forcing subset for S if S is the unique minimum
edge-to-vertex geodetic set containing 7. A forcing subset for S of minimum
cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic
number of S, denoted by fe,,(5), is the cardinality of a minimum forcing subset
of S. The forcing edge-to-vertex geodetic number of G, denoted by fe,(G), is
fev(G) = min{fe,(S)}, where the minimum is taken over all minimum edge-
to-vertex geodetic sets S in G. Some general properties satisfied by the concept
forcing edge-to-vertex geodetic number is studied. The forcing edge-to-vertex
geodetic number of certain classes of graphs are determined. It is shown that
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for every pair a, b of integers with 0 < a < b, there exists a connected graph G
such that fe,(G) = a and ge,(G) = b.

AMS Subject Classification: 05C12
Key Words: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic
number

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and ¢
respectively. For basic definitions and terminologies we refer to [1]. For vertices
u and v in a connected graph G, the distance d (u,v) is the length of a shortest
u—wv path in G. A u— v path of length d (u,v) is called an u —v geodesic. Two
vertices u and v of G are antipodal if d(u,v)=diam G or d(G). The geodetic
number g(G) of G is the minimum order of a geodetic set and any geodetic set of
order ¢g(Q) is called a geodetic basis of G. The geodetic number of a graph was
introduced in [1] and further studied in [5]. For subsets A and B of V (G), the
distance d (A, B) is defined as d (A, B) = min{d (z,y) : 2 € A,y € B}. Au—v
path of length d (A, B) is called an A— B geodesic joining the sets A, B € V (G),
where u € A and v € B. A vertex z is said to lie on an A — B geodesic if x is
a vertex of an A — B geodesic. For A = {u,v} and B = {z,w} with wv and zw
edges, we write an A— B geodesic as uv— zw geodesic and d (4, B) as d (uv, zw).
A set S C FE is called an edge-to-vertex geodetic set of G if every vertex of G is
either incident with an edge of .S or lies on a geodesic joining a pair of edges of
S. The minimum cardinality of an edge-to-vertex geodetic set of G is gey (G).
Any edge-to-vertex geodetic set of cardinality g, (G) is called an edge-to-vertex
geodetic basis of G or a g, (G)-set of G. The edge-to-vertex geodetic number
of a graph was first introduced in [12] and further studied in [7,11]. A vertex
v is an extreme vertex of a graph G if the subgraph induced by its neighbors
is complete. An edge of a connected graph G is called an extreme edge of G if
one of its end is an extreme vertex of GG. For any edge e in a connected graph
G, the edge-to-edge eccentricity es(e) of e is ez(e)= maz {d(e, f) : f € E(G)}.
Any edge e for which e3(e) is minimum is called an edge-to-edge central edge of
G and the set of all edge-to-edge central edges of GG is the edge-to-edge center of
G. The minimum eccentricity among the edges of G is the edge-to-edge radius,
rad G and the maximum eccentricity among the edges of G is the edge-to-edge
diameter, diam G of G. Two edges e and f are antipodal if d(e, f) = diam G or
d(G). This concept was studied in [9]. The forcing concept was first introduced
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and studied in minimum dominating sets in [2]. And then the forcing concept
is applied in various graph parameters viz. geodetic sets, hull sets, matching’s,
Steiner sets and edge covering in [3, 4, 6, 8, 10 | by several authors. In this
paper we study the forcing concept in minimum edge-to-vertex geodetic set of
a connected graph.

Consider the graph G given in Figure 1.1 with A = {v4,v5} and B =
{v1,v9,v7}, the paths P : vs,vg,v7 and Q : vg,v3,v2 are the only two A — B
geodesics so that d(A, B) = 2. For the graph G given in Figure 1.2, the three
v1vg — v3v4 geodesics are P : vy, vo,v3 ; Q : v1,v2,v4 ; and R : vg,vs,v4 with
each of length 2 so that d (vivg, v3v4) = 2. Since the vertices vo and vs lie on the
v1v6—v3vy geodesics P and R respectively, S = {v1vg, v3v4} is an edge-to-vertex
geodetic basis of G so that ge, (G) = 2.

V1 Va ]
Ve Vs V4
(&3
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Throughout the following G denotes a connected graph with at least three
vertices. The following Theorems are used in the sequel.

Theorem 1.1. (see [12]) Let G be a connected graph with size q. Then
every end-edge of G belongs to every edge-to-vertex geodetic set of G.

Theorem 1.2. (see [12]) For the complete bipartite graph G = Ky, (2 <
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m < n),gen(G) =n.

Theorem 1.3. (see [12]) If v is an extreme vertex of a connected graph G,
then every edge-to-vertex geodetic set contains at least one extreme edge that
is incident with v.

2. The Forcing Edge-to-Vertex Geodetic Number of a Graph

Even though every connected graph contains a minimum edge-to-vertex geode-
tic set, some connected graph may contain several minimum edge-to-vertex
geodetic sets. For each minimum edge-to-vertex geodetic set S in a connected
graph G, there is always some subset T" of S that uniquely determines S as the
minimum edge-to-vertex geodetic set containing T". Such ”forcing subsets” will
be considered in this section.

Definition 2.1. Let G be a connected graph and S an edge-to-vertex
geodetic set of G. A subset T C S is called a forcing subset for S if S is the
unique minimum edge-to-vertex geodetic set containing 7'. A forcing subset
for S of minimum cardinality is a minimum forcing subset of S. The forcing
edge-to-vertex geodetic number of S, denoted by fe,,(.5), is the cardinality of a
minimum forcing subset of S. The forcing edge-to-vertex geodetic number of
G, denoted by fey(G), is feo(G) = min{fey(S)}, where the minimum is taken
over all minimum edge-to-vertex geodetic sets .S in G.

Example 2.2. For the graph G given in Figure 2.1, S = {vjv9,vq4v5} is
the unique minimum edge-to-vertex geodetic set of G so that f.,(G) = 0. For
the graph G given in Figure 2.2, S1 = {vyv2, vgvr, v7vs}, S2 = {v1v2, v506, v7U8 }
and S3 = {vjvg, V508, v6u7} are the only ge,-sets of G, such that f.,(S1) = 2,
fev(SQ) - fev(S?)) =1 so that er(G) =L

The next theorem follows immediately from the definition of the edge-to-
vertex geodetic number and the forcing minimum edge-to-vertex geodetic num-
ber of a connected graph G.

Theorem 2.3. For every connected graph G, 0 < fe,(G) < gey (G).

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given
in Figure 2.1, f¢,(G) = 0 and for the graph G = K3, fer(G) = ger(G) = 2.
Also, all the inequalities in the theorem are strict. For the graph G given in
Figure 2.2, fo,,(G) = 1 and gey (G) = 3 so that 0 < fe,(G) < geu (G).
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In the following, we characterize graphs G for which bounds in the Theorem
2.3 attained and also graph for which f.,(G) = 1.

Theorem 2.5. Let G be a connected graph. Then:

a) fer(G) = 0 if and only if G has a unique minimum edge-to-vertex geodetic
set.

b) few(G) = 1 if and only if G has at least two minimum edge-to-vertex
geodetic sets, one of which is a unique minimum edge-to-vertex geodetic set
containing one of its elements, and

¢) fev(G) = gew(Q) if and only if no minimum edge-to-vertex geodetic set
of G is the unique minimum edge-to-vertex geodetic set containing any of its
proper subsets.

The proof of the theorem is straight forward. So we can omitt the proof.

Definition 2.6. An edge e of a connected graph G is an edge-to-vertex
geodetic edge of G if e belongs to every edge-to-vertex geodetic basis of G. If
G has a unique edge-to-vertex geodetic basis S, then every edge of S is an
edge-to-vertex geodetic edge of G.
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Example 2.7. For the graph G given in Figure 2.1, S = {v1v2, v4v5} is the
unique minimum edge-to-vertex geodetic set of G so that both the edges in S
are edge-to-vertex geodetic edges of G.

Remark 2.8. By Theorem 1.1, each end edge of G is an edge-to-vertex
geodetic edge of G. In fact there are certain edge-to-vertex geodetic edges,
which are not end edges of G as the following example shows.

Example 2.9. For the graph G given in Figure 2.2, S1 = {vv2, vgv7, v70s},
Sy = {v1v9, v506, v7v8} and S3 = {vyve, v5Us, Vgv7} are the only ge,-sets of G so
that every ge,-set contains the edge vivs. Hence the edge vyvo is the unique
edge-to-vertex geodetic edge of G, which is not an end edge of G.

Theorem 2.10. Let G be a connected graph and let & be the set of relative
complements of the minimum forcing subsets in their respective minimum edge-
to-vertex geodetic set of G. Then [\pcq F is the set of edge-to-vertex geodetic
edges of G.

Corollary 2.11. Let G be a connected graph and S a minimum edge-to-
vertex geodetic set of G. Then no edge-to-vertex geodetic edge of G belongs to
any minimum forcing set of S.

Theorem 2.12. Let G be a connected graph and W be the set of all
edge-to-vertex geodetic edges of G. Then fe,(G) < geo(G) — |W].

Proof. Let S be a minimum edge-to-vertex geodetic set of G. Then g, (G) =
|S], W C S and S is the unique minimum edge-to-vertex geodetic set containing
S —W. Thus feo(G) < |S = W/| < |S] = W] = geu(G) — [W]. O

Corollary 2.13. IfG is a connected graph with k end edges, then fe,(G) <
9en(G) — k.

Proof. This follows from Theorems 1.1 and 2.12. Ol

Remark 2.14. The bound in Theorem 2.12 is sharp. For the graph G given
in Figure 2.3, Sl = {’1)11}2,1}21}3,’1)4’1)5,1}41}6}, SQ = {1}1’1)2,’1)3’1)4,1}41}5,1}4’1)6}, Sg =
{v1v2, Vov3, VU5, Vo6 } and Sy = {v1v9, V3v4, V4V, VoV } are the only four mini-
mum edge-to-vertex geodetic sets of G such that fe,(S1) = fev(52) = feu(S3) =
fev(S4) = 2 so that fe,(G) = 2 and ge(G) = 4. Also, W = {wvjve,vqv5} is
the set of all edge-to-vertex geodetic edges of G and s0 fey,(G) = e (G) — |[W].
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Also, the inequality in Theorem 2.12 can be strict. For the graph G given in
Figure 2.2, ¢ey(G) = 3 and fey,(52) = fer(S3) = 1 and fe,(S1) = 2 so that
few(G) = 1. Here, vjvy is the only edge-to-vertex geodetic edge of G and so
feo(G) < geo(G) — [W.

In the following we determine the forcing edge-to-vertex geodetic number
of some standard graphs.

Theorem 2.15. For an even cycle C,(p > 4), aset S C E(G) is a minimum
edge-to-vertex geodetic set if and only if S consists of antipodal edges.

Proof. Let p = 2k and let C), : vi,v2,v3, ..., Vg, V41, ..., U2k, V1 be the cycle.
Then the edges v1vy and vg1 V12 are antipodal edges. Let S = {vve, vp110k12}-
Clearly, S is a minimum edge-to-vertex geodetic set of C,. Conversely, let §
be a minimum edge-to-vertex geodetic set of C,. Then ge,(Cp) = |S|. Let S’
be any set of pair of antipodal edges of C,. Then as in the first part of this
theorem, S is a minimum edge-to-vertex geodetic set of C),. Hence |S'| = |S].
Thus S = {uv, zy}. If wv and zy are not antipodal, then any vertex that is not
on the uv — xy geodesic does not lie on the uv — xy geodesic. Thus S is not a
minimum edge-to-vertex geodetic set, which is a contradiction. O

Theorem 2.16. For the cycle Cy(p > 4), feu(Cp) = { ! QZfZ,? ;siingd } .

Proof. If p is even, then by Theorem 2.15, every minimum edge-to-vertex
geodetic set of C, consists of pair of antipodal edges. Hence C), has p/2 indepen-
dent minimum edge-to-vertex geodetic sets and it is clear that each singleton
set is the minimum forcing set for exactly one minimum edge-to-vertex geodetic
set of C),. Hence it follows from Theorem 2.5 (a) and (b) that f.,(Cp) = 1.

Let p be odd. Let p = 2n+1. Let the cycle be C), : v1,v2,v3, ..., Vopy1,v1. If
S = {uv,zy} is any set of two edges of C),, then no edge of the uv — xy longest
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path lies on the uv — xy geodesic in C), and so no two element subset of C), is
an edge-to-vertex geodetic set of C),. Now, it clear that the sets

S1 = {U1U2, Un4+1Un+2, U2nv2n+1} )

Sy = {v1V2, Vng1Vn42, V2nt 101}
S3 = {v203, Unj-2Un43, V2n 4101} 5 -ons
SZn = {/UTLUTLJrl) V2anV2n+1, Unflvn} 5

Sont1 = {Unt1Vn+2, V2nt101, UVn—1Vn }

are the minimum edge-to-vertex geodetic sets of C},. (Note that there are more
minimum edge-to-vertex geodetic sets of C), for example

S = {Un+2vn+37 V1V2, Unvn—i—l}

is a minimum edge-to-vertex geodetic set different from these). It is clear
from the minimum edge-to-vertex geodetic sets S; (1 <i < 2n+ 1) that each
{viviz1} (1 < i < 2n) and {va,y1v1} is a subset of more than one minimum
edge-to-vertex geodetic set S;(1 < i < 2n + 1). Hence it follows from Theorem
2.5 (a) and (b) that fe,(C,) > 2. Since Sj is the unique minimum edge-to-vertex
geodetic set containing T = {v1Un42, VanVon+1}, it follows that fe,(S1) = 2.
Thus fe,(Cp) = 2. O

Theorem 2.17. For the complete graph G = K,(p > 4) with p even, a set
S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S
consists of p/2 independent edges.

Proof. Let S be any set of p/2 independent edges of K,. Since each vertex of
K, is incident with an edge of S, it follows that g.,(G) < p/2. If g¢,(G) < p/2,
then there exists a minimum edge-to-vertex geodetic set S of K, such that
|S"| < p/2. Therefore, there exists at least one vertex v of K, such that v is
not incident with any edge of S'. Hence v is neither incident with any edge
of S" nor lies on a geodesic joining a pair of edges of S* and so S is not a
minimum edge-to-vertex geodetic set of GG, which is a contradiction. Thus S is
a minimum edge-to-vertex geodetic set of K.

Conversely, let S be a minimum edge-to-vertex geodetic set of K. Let
S’ be any set of p/2 independent edges of K,. Then as in the first part of
this theorem, S’ is a minimum edge-to-vertex geodetic basis of K. Therefore

S/‘ = p/2. Hence |S| = p/2. If S is not independent, then there exists a vertex
v of K, such that v is not incident with any edge of S and it follows that S
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is not a minimum edge-to-vertex geodetic set of GG, which is a contradiction.
Therefore, S consists of p/2 independent edges. O

Theorem 2.18. For the complete graph G = K,(p > 4) with p even,
fer(G) = 552,

Proof. Let S be a minimum edge-to-vertex geodetic set of G such that
|S| = p/2. Then by Theorem 2.17, every element of S is independent. We
show that fe,(G) = g — 1. Suppose that fe,(G) < g — 2. Then there exists
a forcing subset T of S such that S is the unique minimum edge-to-vertex
geodetic set of G containing 7" and |T'| < g — 2 . Hence there exists at least
two edges w;uj, wuy, € S such that wuj, wu, ¢ T and i # [,j # m. Then
S1 =85 — {uiuj, wum } U {ujum, wiu;} is a set of p/2 independent edges of G
containing 7. By Theorem 2.16, S is a minimum edge-to-vertex geodetic set

of G which is a contradiction to T is a forcing subset of S. Hence fe,(G)

P P—2 -
3 1l=5" O

Theorem 2.19. For the complete graph G = K,(p > 5) with p odd, a set
S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S
consists of % independent edges and two adjacent edges of G.

Proof. Let S7 be any set of # independent edges of K, and S be two
adjacent edges of K, each of which is independent with the edges of Si. Let
S = S1USy. Since each vertex of K, is incident with an element of S, it
follows that S is a minimum edge-to-vertex geodetic set of K, so that g.,(G) <
P23 42 = 2H 1 g.,(G) < &2, then there exists a minimum edge-to-vertex
geodetic set S of K, such that 18] < ZHL | Therefore, there exists at least
one vertex v of K, such that v is not incident with any edge of S’. Hence the
vertex v is neither incident with any edge of S nor lies on a geodesic joining a
pair of edges of S and so S is not a minimum edge-to-vertex geodetic set of
G, which is a contradiction. Hence g.,(G) = %.

Conversely, let S be a minimum edge-to-vertex geodetic set of G. Let S” be
any set of # independent edges of G and two adjacent edges of G. Then as
in the first part of this theorem, S is a minimum edge-to-vertex geodetic set of
G. Therefore, |S'| = ZHL Hence |S| = £ZEL. Let us assume that S = 51 U So,
where S consists of independent edges and Ss consists of adjacent edges of G.
If [S1] < £52 — 1, then S» must contain at most n — [S;| edges. Then there
exists at least one vertex v of K, such that v is not incident with any edge
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of S and so S is not a minimum edge-to-vertex geodetic set of G, which is a
contradiction. Therefore S consists of % independent edges of G and two
adjacent edges of G. O

Theorem 2.20. For the complete graph G = Ky(p > 5) with p odd,
fer(G) = 551

Proof. Let S be a minimum edge-to-vertex geodetic set of G. Then by
Theorem 2.19, S = S; US>y, where Sy consists of % independent edges and S9
consists of two adjacent edges and |S| = ZF. We show that f.,(G) = £ —1.
Suppose that fe,(G) < % — 2. Then there exists a forcing subset T" of S such
that S is the unique minimum edge-to-vertex geodetic set of G containing 7" and
|T| < % —2. Hence there exists at least two edges x,y € S such that =,y ¢ T.
Let us assume that So = {ugzuy, uyu,}. Suppose that z,y € S;. Then x = w;u;
and y = wu,, such that i # [,j # m. Now, S3 = S — {z,y} U {uum, wu;}
consists of % independent edges and two adjacent edges of G containing 7.
By Theorem 2.19, S3 is a minimum edge-to-vertex geodetic set of G containing
T, which is a contradiction to T is a forcing subset of G. Suppose that x,y € Ss.
Let x = uzuy and y = uyu,. Let u;u; be an edge of S1. Now, join the vertices
Uy, u; and u,, uj. Now Sy = S1 — {wju;} U {uguy} U {uyu;, u.u;} consists
of £ 2 3 independent edges and two adjacent edges of G. By Theorem 2.19,
Sy is a minimum edge-to-vertex geodetic set of G containing T, which is a
contradiction. Suppose that x € 57 and y € S3. Let 2 = w;u; and y = uzuy,.
Now, S5 = S1 — {usuj} U {ujuy} U {ujug, uyu.} consists of £52 independent
edges and two adjacent edges of G containing 7. By Theorem 2.19, S5 is a
minimum edge-to-vertex geodetic set of G, which is a contradiction to that T’

is a forcing subset of G. Hence f.,(G) = & —1= L1 O

Theorem 2.21. A set S of edges of G = K, ,(n > 2) is a minimum edge-
to-vertex geodetic set of G if and only if S consists of n independent edges.

Proof. The proof is similar to the proof of Theorem 2.17. U

Theorem 2.22. For the complete bipartite graph G = K, ,(n > 2),
fer(G) =n—1.

Proof. The proof is similar to the proof of Theorem 2.18. U
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Theorem 2.23. A set S of edges of G = K, ,(2 < m < n) a minimum
edge-to-vertex geodetic set of G if and only if S consists of m — 1 independent
edges of G and n —m + 1 adjacent edges of G.

Proof. The proof is similar to the proof of Theorem 2.19. U

Theorem 2.24. For the complete bipartite graph G = Ky, (2 < m < n),
fer(G) =n—1.

Proof. The proof is similar to the proof of Theorem 2.20. U

Theorem 2.25. For a non trivial tree of size q¢ > 2, fe,(G) = 0.

Proof. For G = K 4, it follows from Theorem 1.1 that the set of all end
edges of G is the unique minimum edge-to-vertex geodetic set of G. Now, it
follows from Theorem 2.5(a) that fe,(G) = 0. O

3. Realization Result
In view of Theorem 2.3, we have the following realization theorem.

Theorem 3.1. For every pair a,b of integers with 0 < a < b, there exists
a connected graph G such that fe,(G) = a and ge,(G) = b.

Proof. Suppose a = 0. Let G = K; . Then by Theorem 2.25, f.,(G) =0
and from Theorem 1.1, ge,(G) = b. Suppose that b = a + 1. Let G = Ky,
Then by Theorem 1.2, ge,(G) = b and from Theorem 2.24, fo,(G) =b—1=a
. Thus, we assume that 0 < a < b. Let F; : u;,v;, z;,u;(1 < i < a) be a copy
of Cs. Let G be the graph obtained from F;(1 < i < a) by first identifying the
vertices x;—1 of F;_1 and x; of F;(2 < i < a) and then adding b — a new vertices
21,22y ooy Zb—a—1, W and joining the b — a edges u12;(1 <i < b—a— 1) and z,u.
The graph G is given in Figure 3.1. Let Z = {uj21,u129, ..., u12p—q—1, Tqu} be
the set of all end edges of G. Let Hi = {h;, k;} (1 <i < a), where h; = u;v; and
k; = viz;. First we show that ge,(G) = b. By Theorem 1.3, every edge- to-vertex
geodetic set of G must contain at least one vertex from H;(1 < i < a). Thus
gev(G) > b—a+a =b. On the other hand, since the set S = ZU{hq, ha, ..., hq}
is a minimum edge-to-vertex geodetic set of G, it follows that g.,(G) < |S| = b.
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Thus gey(G) = b. Next we show that f.,(G) = a. Since every ge,-set of
G contains Z, it follows from Theorem 2.12 that fo,(G) < geo(G) — |Z] =
b— (b—a) = a. Now, since ge,(G) = b and every minimum edge-to-vertex
geodetic set of G contains 9, it is easily seen that every minimum edge-to-vertex
geodetic set W is of the form W U {ey, e, ...,e,}, where ¢; € H;(1 < i < a).
Let T be any proper subset of S with || < a. Then there exists an edge
ej(1 < j < a) such that ej ¢ T. Let f; be an edge of H; distinct from e;.
Then Wi = (S — {e;}) U {fj} is a gev-set properly containing 7". Thus W is
not the unique gey-set containing 7. Thus 7' is not a forcing subset of S. This
is true for all minimum edge-to-vertex geodetic sets of G and so it follows that
fer(G) = a. O
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